Engineering Utility Software

J. Johnston

J. Bolognese, S. Gordon, J. Kuhn, F. Tahmasebi NASA GSFC/Code 542

FEMCI Presentation March 9, 2000

Outline

- Overview of presentation
- Program descriptions
 - □ Functionality
 - □ Inputs
 - Commands
 - Limitations
 - Location
 - □ Contact information
 - □ References
- Summary

Overview

The objective of this presentation is to provide an overview of the FEA engineering utility software available to GSFC structural analysts.

- Input from FEMCI user's group solicited 1/2000.
- This presentation was compiled with the assistance of the program developers and users who responded to the original solicitation.
- Discussion is limited primarily to UNIX based applications developed in-house or by contractors.

Engineering Utility Programs

- ADHSV_STRS/STRN
- FLAME
- NASGLU
- NASMET
- PCHSCAN
- RQNAS
- STOCS
- THDEF
- UAIMODAL

ADHSV STRS/STRN

Functionality: Programs to obtain stresses and strains in

adhesively bonded joints. Also sorts results and generates Mathematica plot files for 3-D visualization of stress and strain fields.

Inputs: NASTRAN input and output files.

Commands: Detailed command listing available

(see reference).

Limitations: A specific bonded joint modeling technique

must be utilized. Details regarding the

technique are provided on the FEMIC website and in a GSFC memorandum (see reference).

Location: On the FEMCI website at:

http://femci.gsfc.nasa.gov/adhesive/

Contact: Farhad Tahmasebi/GSFC 542

References: "Software Tools for Analysis of Bonded Joints,"

F. Tahmasebi/542.1, July 28, 1999. Also at:

http://femci.gsfc.nasa.gov/adhesive/

FLAME (Flight Loads and Matrix Executive)

Functionality: Performs matrix operations and manipulations

(i.e. MATLAB). Contains routines for eigenvalue extraction, transient analysis, steady-state response, and random vibration. Creates load transformation matrices (LTM's) for Craig-Bampton models. Also useful for

manipulating analysis and test data.

Inputs: Matrices in one of the following formats:

NASTRAN Output4 format (binary and ASCII), FORTRAN binary, or ASCII text.

Commands: Detailed command listing available. Batch

mode available.

Limitations: No data plotting capability.

Location: Currently located on SGI's at

/usr/local/bin/flame. Beta version (untested)

available for Windows 98/NT.

Contacts: Kevin Brenneman/Swales

Scott Gordon/GSFC 542 Reg Mitchell/GSFC 542

NASGLU (NASTRAN General LTM Utility)

Functionality: Program for post-processing of NASTRAN

results files (UAI/MSC/COSMIC). Transfers data between NASTRAN, FLAME, FEMAP, and spreadsheets. Reads a NASTRAN output file and generates formatted (sorted, unsorted, max/min) results tables. Will also read in a

binary matrix (i.e. from FLAME).

Inputs: NASTRAN output files (.prt,.f06,.f65c) or

matrices stored as binary files.

Commands: Detailed command listing available through

online help available during program execution.

Limitations: See online help file.

Location: On the SGI's at /usr/local/bin/nasglu

Contacts: Kevin Brenneman/Swales

Reg Mitchell/GSFC 542

NASMET

Functionality: Utility to convert the units of a NASTRAN

bulk data deck. Originally intended to convert English units to SI. Can be used to convert to a number of English and metric units. User specified conversion factors available for

unsupported units.

Inputs: NASTRAN input file.

Commands: User enters the input file name, and a name for

the new (converted) file. A menu then walks the user through the conversions for length, time, force, and temperature. User may also

specify a value for PARAM, WTMASS.

Limitations: Not all NASTRAN cards supported.

Location: On SGI's in directory /usr/local/bin/nasmet

Contact: Jeff Bolognese/GSFC 542

PCHSCAN

Functionality: Program for evaluating output data from a unit

enforced displacement validity check. Compares output results with expected data and produces

a listing of grids and elements that exceed

specified limits.

Inputs: Punch (.pch) file containing UED output data.

Commands: Program prompts the user for file names, type

of NASTRAN (UAI or MSC), and the UED

cases analyzed.

Limitations: Very large files will frequently hang up the

program. Tolerances are specified in English

units and may not be applicable to other units.

Location: On the SGI's at /home/jeff/programs/pchscan15

Contacts: Jeff Bolognese/GSFC 542

Mark McGinnis/GSFC 542

Reference: http://femci.gsfc.nasa.gov/validitychecks

/pchscan.html

RQNAS

Functionality: A GUI for remotely submitting and monitoring

jobs on Analyst and Parrot. Provides for

automated transferring, submitting, inspecting,

and retrieving of NASTRAN jobs.

Inputs: NASTRAN input file. Note that program

automatically handles include statements.

Commands: User double clicks on a master .dat file

to automatically transfer it to analyst

or parrot and submit it as a NASTRAN job.

Rqnas pops up a dialog box requesting the queue, and automatically modifies the time card in the .dat file. When a job is

completed, double click on the job and all

the files will be downloaded.

Limitations: Some problems with user's shell on parrot

during initial setup that can be resolved in

user's .cshrc file.

Location: ftp:/analyst.gsfc.nasa.gov/jonathan/perl

/Rqnas v1.2.zip

Contact: Jonathan Kuhn/GSFC 542

STOCS (Structural Optical Components Shifts)

Functionality: Program for calculating the thermal distortions

> of a simple structure in a stress-free mounting condition. Intended as a first cut before creating

a detailed NASTRAN model for STOP analysis.

Inputs: User inputs geometry, properties, constraints,

and thermal loads

Commands: Command line execution or batch mode available

> Consult on-line manual available on the FEMCI site (http://femci.gsfc.nasa.gov/stocs/) for

detailed command listing.

Limitations: All structures and substructures must be

constrained in a stress free configuration.

Location: On the SGI's at /usr/local/bin/stocs

Contact: Jeff Bolognese/GSFC 542

> Clifton Jackson/GSFC Reg Mitchell/GSFC 542

Reference: http://femci.gsfc.nasa.gov/stocs/

THDEF

Functionality: Program calculates theoretical displacements

for comparison with NASTRAN results for a unit temperature increase (UTI) validity

check.

Inputs: Sorted NASTRAN bulk data deck.

Commands: User enters the input file name, and a name for

the output file with the theoretical displacements.

The program prompts the user for a CTE value, thermal loading (bulk temperature change and/

or thermal gradients), and constraints.

Limitations: Structure must be constrained with a kinematic

mount. Single coefficient of thermal expansion must be used for all materials. Program does

not allow for local coordinate systems. Limited

to 100000 grid points in model.

Location: On the SGI's at /home/jdj542/bin/thdef

Contacts: Reg Mitchell/GSFC 542

UAIMODAL

Functionality: Reads modal effective weight (EFW) data from

a UAI/NASTRAN .prt file and outputs results in

a formatted table.

Inputs: UAI/NASTRAN normal modes analysis

output (.prt) file.

Commands: Command line execution or GUI. User inputs

name of .prt file and program outputs EFW

results table (echoed to screen and saved as a file).

Limitations: Requires the use of DMAP (mp v20.dmp)

for calculation of EFW data. Program is

UAI/NASTRAN specific. Output titles only

reflect units of lbs and lbs-in².

Max number of modes = 500

Max frequency = 9999.99 Hz

Location: ftp://analyst.gsfc.nasa.gov/jonathan/perl

/uaimdl v1.0.zip OR

http://femci.gsfc.nasa.gov/modal wtc

/uaimdl v1 0.zip

Contacts: Scott Gordon/GSFC 542

Jonathan Kuhn/GSFC 542

Reference: http://femci.gsfc.nasa.gov/modal_wtc

/uai mmp.html

Summary

- Engineering utility software available to GSFC structural analysts reviewed.
- Check out the FEMCI web site!
 - □ Additional information for many of the engineering utility programs is available in the FEMCI book: http://femci.gsfc.nasa.gov/femcibook.html
 - □ Supplemental information gathered in preparation for this presentation will eventually be posted as well.
- Potential topics for further discussion:
 - Commercial utility software
 - Pre/Post Processing Software
 - TCON
 - Others?
 - □ Future needs for new utilities